16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое линейный датчик положения?

Датчики перемещения (индуктивный, оптический, емкостной и другие типы)

Конструкция датчиков перемещения может быть очень разнообразном. Каждый тип имеет свои преимущества и недостатки, в этой статье вы узнаете принцип действия всех существующих на сегодняшний день датчиков перемещения.
Вы также можете посмотреть другие статьи. Например, «Виды деформации твердых тел» или «Датчики деформации (экстензометры)».

Датчик перемещения — это прибор, предназначенный для определения величины линейного или углового механического перемещения какого-либо объекта. Разумеется, подобные приборы имеют колоссальное количество практических применений в самых разнообразных областях, поэтому существует множество классов датчиков перемещения, которые различаются по принципу действия, точности, цене и прочим параметрам. Следует сразу отметить, что все датчики перемещения можно разделить на две основных категории — датчики линейного перемещения и датчики углового перемещения (энкодеры). В рамках данного обзора основное внимание будет уделено именно датчикам линейного перемещения.

По принципу действия датчики перемещения могут быть:

  • Емкостными
  • Оптическими
  • Индуктивными
  • Вихретоковыми
  • Ультразвуковыми
  • Магниторезистивными
  • Потенциометрическими
  • Магнитострикционными
  • На основе эффекта Холла

Емкостные датчики перемещения

В основе работы датчиков данного типа лежит взаимосвязь ёмкости конденсатора с его геометрической конфигурацией. В простейшем случае речь идёт об изменении расстояния между пластинами вследствие внешнего физического воздействия (Рисунок 1). Поскольку ёмкость конденсатора изменяется обратно пропорционально величине зазора между пластинами, определение ёмкости при прочих известных параметрах позволяет судить о расстоянии между пластинами. Изменение ёмкости можно зафиксировать различными способами (например, измеряя его импеданс), однако в любом случае конденсатор необходимо включить в электрическую цепь.

Рисунок 1. Емкостной датчик линейного перемещения с изменяющейся величиной зазора.

Другой схемой, где выходным параметром является электрическая ёмкость, является схема, содержащая конденсатор с подвижным диэлектриком (Рисунок 2). Перемещение диэлектрической пластины между обкладками конденсатора также приводит к изменению его ёмкости. Пластина может быть механически связана с интересующим объектом, и в этом случае изменение ёмкости свидетельствует о перемещении объекта. Кроме того, если сам объект обладает свойствами диэлектрика и имеет подходящие габариты — он может быть использован непосредственно в качестве диэлектрической среды в конденсаторе.

Рисунок 2. Емкостной датчик линейного перемещения с подвижным диэлектриком.

Оптические датчики перемещения

Существует множество вариаций схем датчиков перемещения, основанных на различных оптических эффектах. Пожалуй, наиболее популярной является схема оптической триангуляции — датчик положения является, по сути, дальномером, который определяет расстояние до интересующего объекта, фиксируя рассеянное поверхностью объекта излучение и определяя угол отражения, что даёт возможность определить длину d — расстояние до объекта (Рисунок 3). Важным достоинством большинства оптических датчиков является возможность производить бесконтактные измерения, кроме того такие датчики обычно довольно точны и имеют высокое быстродействие.

Рисунок 3. Оптический датчик перемещения на основе схему оптической триангуляции.

В другой реализации оптического датчика, предназначенной для регистрации и определения параметров малых перемещений и вибраций, используется двойная решётчатая конструкция, а также источник света и фотодетектор (Рисунок 4). Одна решётка неподвижна, вторая подвижна и может быть механически закреплена на интересующем объекте или каким-либо способом передавать датчику его движение. Малое смещение подвижной решётки приводит к изменению интенсивности света, регистрируемой фотодетектором, причём с уменьшением периода решётки точность датчика возрастает, однако сужается его динамический диапазон.

Рисунок 4. Оптический датчик перемещения на основе дифракционных решеток.

Дополнительными возможностями применения обладают оптические датчики, учитывающие поляризацию света. В таких датчиках может быть реализован алгоритм селекции объектов по отражательным свойствам поверхности, т.е. датчик может «обращать внимание» только на объекты с хорошей отражающей способностью, прочие объекты игнорируются. Разумеется, чувствительность к поляризации негативно сказывается на стоимости подобных устройств.

Индуктивные датчики перемещения

В одной из конфигураций датчика данного типа чувствительным элементом является трансформатор с подвижным сердечником. Перемещение внешнего объекта приводит к перемещению сердечника, что вызывает изменение потокосцепления между первичной и вторичной обмотками трансформатора (Рисунок 5). Поскольку амплитуда сигнала во вторичной обмотке зависит от потокосцепления, по величине амплитуды вторичной обмотки можно судить о положении сердечника, а значит и о положении внешнего объекта.

Рисунок 5. Индуктивный датчик перемещения на трансформаторе.

Другая конфигурация имеет более простую схему, однако она пригодна лишь для небольшого количества приложений, где требуется определять незначительные перемещения или вибрации объектов, состоящих из ферромагнитного материала. В данной схеме интересующий ферромагнитный объект играет роль магнитопровода, положение которого влияет на индуктивность измерительной катушки (Рисунок 6).

Рисунок 6. Индуктивный датчик перемещения для объектов из ферромагнитных материалов.

Вихретоковые датчики перемещения

Датчики данного типа содержат генератор магнитного поля и регистратор, с помощью которого определяется величина индукции вторичных магнитных полей. Вблизи интересующего объекта генератор создаёт магнитное поле, которое, пронизывая материал объекта, порождает в его объёме вихревые токи (токи Фуко), которые, в свою очередь, создают вторичное магнитное поле (Рисунок 7). Параметры вторичного поля определяются регистратором, и на их основании вычисляется расстояние до объекта, так как чем объект ближе, тем больший магнитный поток будет пронизывать его объём, что усилит вихревые токи и индукцию вторичного магнитного поля. Подобный принцип используется и в вихретоковых дефектоскопах, однако там на параметры вторичного магнитного поля влияет не расстояние до объекта, а наличие в его внутренней структуре скрытых несовершенств. Метод является бесконтактным, однако может применяться только для металлических тел.

Рисунок 7. Вихретоковый датчик перемещения.

Ультразвуковые датчики перемещения

В ультразвуковых датчиках реализован принцип радара – фиксируются отражённые от объекта ультразвуковые волны, поэтому структурная схема обычно представлена источником ультразвуковых волн и регистратором (Рисунок 8), которые обычно заключены в компактный корпус. Определение временной задержки между моментами отправки и приёма ультразвукового импульса позволяет измерять расстояние до объекта с точностью, доходящей до десятых долей миллиметра. Наряду с оптическими, ультразвуковые датчики на сегодняшний день являются, пожалуй, наиболее универсальным и технологичным бесконтактным средством измерения. Использование этого принципа измерений опять же можно найти в детекторах обнаружения дефектов, только на этот раз уже в ультрозвуковых дефектоскопах.

Рисунок 8. Ультразвуковой датчик перемещения.

Магниторезистивные датчики перемещения

В магниторезистивных датчиках перемещения используется зависимость электрического сопротивления магниторезистивных пластинок от направления и величины индукции внешнего магнитного поля. Датчик, как правило, состоит из постоянного магнита и электрической схемы, содержащей включённые по мостовой схеме магниторезистивные пластинки и источник постоянного напряжения (Рисунок 9). Интересующий объект, состоящий из ферромагнитного материала, перемещаясь в магнитном поле, изменяет его конфигурацию, вследствие чего изменяется сопротивление пластинок, и мостовая схема регистрирует рассогласование, по величине которого можно судить о положении объекта.

Рисунок 9. Магниторезистивный датчики перемещения.

Датчики на основе эффекта Холла

Датчики этого типа имеют конструкцию подобную конструкции магниторезистивных датчиков, однако в основу их работы положен эффект Холла — прохождение тока через проводник, на который воздействует внешнее магнитное поле, приводит к возникновению разности потенциалов в поперечном сечении проводника.

Магнитострикционные датчики перемещения

Как правило, магнитострикционный датчик представляет собой протяжённый канал – волновод, вдоль которого может свободно перемещаться постоянный кольцевой магнит. Внутри волновода содержится проводник, способный при подаче на него электрических импульсов создавать магнитное поле вдоль всей своей длины (Рисунок 10). Полученное магнитное поле складывается с полем постоянного магнита, и результирующее поле создаёт момент вращения канала, содержащего волновод (эффект Вайдемана). Импульсы вращения распространяются по каналу в обе стороны со скоростью звука материала канала. Регистрация временной задержки между отправкой электрического импульса и приёма импульса вращения позволяет определить расстояние до постоянного магнита, т.е. определить его положение. Канал может иметь довольно большую длину (до нескольких метров), а положение магнита может быть определено с точностью до нескольких микрометров. Магнитострикционные датчики обладают отличной повторяемостью, разрешением, устойчивостью к неблагоприятным условиям и низкой чувствительностью к температурным изменениям.

Читать еще:  Коротко о производстве и применении сварной сетки

Рисунок 10. Магнитострикционный датчик перемещения.

Потенциометрические датчики перемещения

Датчик данного типа в своей основе имеет электрический контур, содержащий потенциометр (Рисунок 11). Линейное перемещение объекта приводит к изменению сопротивления потенциометра (переменного резистора). Если через потенциометр пропускать постоянный ток, то падение напряжения на нём будет пропорционально величине сопротивления, и, следовательно, величине линейного перемещения интересующего объекта.

Рисунок 11. Потенциометрический датчик перемещения.

Наряду с механическими датчиками перемещения, потенциометрические датчики получили наиболее широкое распространение в силу своей простоты и низкой стоимости, однако для универсальных, прецизионных и бесконтактных измерений в последнее время всё чаще используются датчики на основе оптических эффектов.

Если вам понравилась статья нажмите на одну из кнопок ниже

Виды и где применяются датчики линейного перемещения, как сделать своими руками

Контроллеры – устройства, позволяющие сделать жизнь людей проще. Есть контроллеры света, датчики звука, а есть регистраторы перемещения. Последние определяют величину изменения координат чего-либо. Разумеется, они применяются во всех сферах человеческой жизни. Далее будет рассмотрен датчик для контроля линейного перемещения объектов: его разновидности, характеристики, а также применение устройства.

Описание и назначение прибора

В общем виде подобные контроллеры состоят из элементарного электронного устройства (конденсатора, катушки, резистора, их комбинаций с дополнениями), механического объекта, изменяющего параметры этих устройств (феррита или пластины диэлектрика), а также АЦП для обработки сигнала аналогового формата и передачи его на управляющий элемент (микроконтроллер, например).

Виды и принцип действия

Контроллеры движения различаются по физическим явлениям, которые лежат в их основе, и, соответственно, по способу функционирования.

Емкостные

Работа таких регистраторов основана на варьировании емкости конденсатора.

Из школьного курса физики известно, что емкость проще изменить, уменьшая или увеличивая расстояние между его обкладками, либо внесением диэлектрика между его пластинами.

Исходя из этого получается, что емкостные контроллеры бывают двух видов (в зависимости от способа изменения емкости накопителя).

В первом случае чем ближе измеряемая цель, движение которого фиксирует датчик, тем меньше зазор между обкладками, тем больше его емкость. И наоборот.

При использовании емкостного контроллера второй конфигурации движение фиксируется при помощи пластины, связанной с измеряемой целью. Чем цель ближе, тем больше пластина проникает между пластинами.

Фиксировать величину емкости можно разными способами. Например, измерять комплексное сопротивление конденсатора.

Оптические

Эффектов из раздела оптики, на которых можно построить датчик движения, много. Самый популярный и чаще используемый – эффект оптической триангуляции. Контроллеры на его основе определяют расстояние от движущейся цели с помощью фиксации рассеянного о поверхность перемещающегося объекта излучения и определения угла отражения с помощью фотодетектора.

Такие контроллеры производят измерение расстояния, никак не контактируя с выбранной целью. Они высокоточные и быстро реагируют на изменение измеряемых параметров.

Другой вид оптических контроллеров основан на учете вибрации и малых перемещений. Такие регистраторы состоят из трубы, двух решеток внутри – одна зафиксирована на месте, а вторая подвижная и может быть связана с движущимся объектом – и фотодетектора.

При появлении движения со стороны цели подвижная решетка изменяет свое положение, что влияет на интенсивность света, поступающего через обе решетки на фотодетектор.

Если такие датчики научить распознавать поляризацию света, то можно на их основе создавать селекционные контроллеры, которые будут реагировать только на объекты, хорошо отражающие свет.

Индуктивные

Принцип функционирования индуктивных контроллеров в одном из исполнений похож на принцип работы емкостных контроллеров, где емкость изменялась за счет внесения в конденсатор диэлектрика.

Правда, в индуктивные приборы вносится не диэлектрик, а сердечник в трансформатор. Сердечник связан с движущейся целью. Чем он больше проникает между обмотками, тем больше амплитуда, например, напряжения во вторичном проводе.

По размерности сигнала во вторичном проводе можно иметь представление о положении интересующей цели.

Такие регистры имеют и другую конфигурацию. Они могут состоять из ферромагнетика и измерителя индуктивности. Ферромагнетик связан с движущейся целью. По близости ферромагнетика к измерителю можно судить о положении объекта.

Индуктивные контроллеры во втором исполнении можно применять только для контроля небольших перемещений.

Вихретоковые

Такие контроллеры в своем составе имеют генератор магнитного поля и его регистратор. Регистратор определяет индукцию создаваемого поля. Движущаяся цель создает побочное магнитное поле с помощью вихревых токов. Оно пересекается с исходным полем, создаваемым генератором.

От пересечения магнитных линий изменяется индукция поля. Изменение индукции фиксирует регистратор. По нему можно судить о положении цели.

Ультразвуковые

Они представляют собой радары. Принцип их действия простой: источник контроллера излучает ультразвуковую волну, она сталкивается с движущейся целью, отражается от него, а приемник контроллера ее фиксирует. По различию параметров отраженной и принимаемой волны делают выводы о положении движущегося объекта.

Магниторезистивные

Такой контроллер в своем составе имеет постоянный и пластины, параметры которых зависят от величины магнитного поля вокруг, включенные по схеме, называемой “мостом”. Последние изменяют свое сопротивление в зависимости от индукции вокруг них.

Брусок из ферромагнетика, связанный с движущимся объектом, в зависимости от положения последнего, перемещается в поле, изменяет его индукцию, пластины меняют импеданс, и схема регистрирует фактически изменение этого сопротивления. По величине этого рассогласования судят о положении нужной цели.

Потенциометрические

Эти датчики – одни из самых простых контроллеров движения. Все, что они имеют в своем составе, это источник сигнала и потенциометр, регулятор которого связан с движущейся целью.

В зависимости от положения ручки меняется разность потенциалов на переменном резисторе.

По величине этого напряжения можно судить о положении цели.

Магнитострикционные

Эффект магнитострикции состоит в изменение объема и габаритов какого-либо тела при изменении его намагниченности. Регистры на основе этого эффекта состоят из волновода (трубки), по которому перемещается магнит в форме кольца. Внутри трубки находится провод с подключенными к нему генератором и регистром импульсов. Поле, создаваемое проводником, складывается с полем, создаваемым магнитом.

Суммированное поле вращает трубку, что позволяет волноводу создавать импульсы вращения, попадающие на регистратор. По задержке между отправлением электроимпульса и приходом импульса от волновода можно определить расстояние до кольца, а положение магнита дает представление о положении перемещающейся цели.

Читать еще:  Как быстро построить надежный и долговечный дом

На основе эффекта Холла

Контроллеры, принцип функционирования которых объясняется действием этого эффекта, похожи на магниторезистивные.

Эффект Холла состоит в изменении напряжения проводника при прохождении через него электрического тока.

Области применения

Любой регистратор движения представляет собой индикатор с аналогово-цифровым преобразователем. Аналоговый сигнал – изменение напряжения, емкости конденсатора, амплитуды во вторичной обмотке и других параметров. Цифровой сигнал – то, что управляет подключенной к датчику системой.

Каким-то системам достаточно лишь двух сигналов с датчика – нуля и единицы. К ним относятся системы сигнализации (извещатели), в которых ноль – дверь закрыта, единица – дверь открыта; системы управления светом (ноль – никого нет в помещении, свет выключен, единица – в помещении есть движение, свет включен).

Хотя есть системы, в которых важна точность измерений подобных датчиков. Например, станки с числовым программным управлением, которые на основе данных с датчика движения могут регулировать положение в пространстве работающего механизма (иглы или сверла).

Обзор производителей

На рынке представлено большое количество производителей датчиков линейного движения, среди которых:

Эти компании выпускают продукцию различного качества, разного функционала и разной ценовой категории.

Важно! Стоимость всех далее приведенных устройств, которые производятся не в России, зависит от курса рубля.

ЭЛТЕХ

ЭЛТЕХ – компания из Санкт-Петербурга, которая является крупнейшим производителем подобных контроллеров в стране. Они выпускают датчики емкостного, индуктивного и магниторезистивного типа.

Longfellow-2 и DuraStar

Longfellow-2 и DuraStar – датчики линейного движения, относящиеся к типу потенциометрических. Они способны улавливать изменения движения в пределах до 6,1 см с точностью 0,5%.

Чем дороже стоят модели, тем больший диапазон измерений они поддерживают.

DEPP EP15-series

Модель датчика китайской компании DEPP, относящегося к типу устройств, в основе которых лежит изменение магнитной индукции поля. Они применяются в станках и системах автоконтроля.

HENGXIA K100-series

Модель оптического датчика, которая может фиксировать размеры в диапазоне 0,5 – 72 см.

Roundss Rlc50d

По сути, этот датчик – электронная рулетка, которая с высокой точностью определяет необходимые расстояния.

Как изготовить своими руками

Проще всего создать потенциометрический датчик и подключить к нему какой-либо микропроцессор.

Для создания потенциометрического датчика нужно взять блок питания и потенциометр, регулировочную ручку которого следует подключить к перемещаемому объекту. К потенциометру нужно подключить один из выводов микроконтроллера в режиме АЦП (обязательно через ограничительный резистор, чтобы вход не сгорел), а к другому выводу следует подключить систему, управление которой осуществляется (аналогично через резистор).

Не так сложно изготовить индуктивный датчик. Для этого понадобится тот же микроконтроллер с входом в режиме АЦП, две обмотки для будущего трансформатора и регулируемый сердечник. Подвижную часть сердечника нужно подключить к движущемуся объекту, АЦП – ко вторичной обмотке, первичную обмотку соединить с источником питания, к другому выводу микроконтроллера следует подключить управляемую систему. Нельзя забывать об ограничительных резисторах.

По аналогии можно собрать емкостной датчик с введением диэлектрика. Вместо обмоток трансформатора подключаются обкладки конденсатора, вместо ферромагнетика сердечника – любой диэлектрик.

Можно собрать и лазерный датчик линейного перемещения. Как раз такой применяется в станках с ЧПУ. Проблем с приобретением самого излучателя нет. Они могут возникнуть на этапе обработки сигнала с лазерного излучателя. Делать это проще всего с помощью микроконтроллера (например, SMT или AVR), но для отладки обработки этого сигнала потребуется потратить много времени, если нет большого опыта в проектировании таких устройств.

Технические устройства с более сложной конструкцией, конечно, тоже можно самостоятельно собрать. Тем более, что их схемы доступны в интернете, вопрос только в подборе номиналов элементов. Хотя лучше приобрести готовые изделия, потому что они заранее проверены и настроены инженерами компании-изготовителя.

Правила эксплуатации

Первое, что нужно уяснить при эксплуатации подобных датчиков –, они не любят резких воздействий со стороны, к которым относятся удары, вибрация, падения и т.д. Дорогие датчики линейного перемещения – высокочувствительные устройства и в них устанавливаются элементы, не переносящие деформации. Удар или деформация может повредить контакт регистратора, и тогда датчик будет показывать неточный результат (или не будет его выводить вообще).

Например, подвижная сетка оптического датчика крайне чувствительна к внешним воздействиям, как и регистраторы в магнитострикционных и магниторезистивных типах моделей.

Также не следует пытаться дорабатывать датчики самостоятельно, если нет никакого опыта в подобных модернизациях. Если контроллер рассчитан на определенную точность, не нужно пытаться ее повысить. Для этого придется пересчитывать номиналы всех элементов в устройстве и, если допустить ошибку, можно его сломать.

Датчики линейного перемещения требуют к себе бережного отношения, если речь идет о бытовых контроллерах, а не об устройствах, которые должны нормально работать в экстренных условиях, вроде датчиков, применяемых в горнодобывающей промышленности.

Контроллеры, предназначенные для работы в особых условиях, не продаются в бытовых магазинах или на популярных китайских сайтах. Изготавливаются они во многих случаях на заказ на специальных предприятиях, а их стоимость в разы выше, чем у массовых аналогов.

Давно пыталась понять, как работают датчики линейного перемещения. Теперь наконец-то разобралась в этой теме и смогла ответить на давно волнующий вопрос. Здесь хорошо показано как сделать его своими руками. Тоже хочу попробовать.

А почему стоимость датчиков не уточнили? Про зависимость от курса доллара-евро я поняла, но ведь даже примерная цена в тексте не указана?

Датчики положения

Большая часть датчиков положения используется для контроля перемещения, в непрерывном производстве изделий и периодических процессах. Ведущими технологиями являются концевые выключатели, индуктивные датчики и аварийные выключатели. Наиболее высокими темпами растет использование видеодатчиков.

• Расширение функций датчика положения

• Популярность концевых выключателей индуктивных датчиков

• Наибольший рост видеодатчиков

• Выбор в пользу высокой точности

Благодаря разнообразию технологии определения положения, они кажутся “хорошо позиционированными” в своих областях применения. Это подтверждает тот факт, что более 95% респондентов проведенного недавно опроса указали, что в будущем году они намерены сохранить или увеличить объем применения таких датчиков. В число наиболее применяемых входят концевые выключатели, индуктивные датчики и аварийные выключатели. Наибольший рост наблюдался у видеодатчиков.

В опросе, проведенном Reed Corporate Research среди подписчиков Control Engineering, которые составляют спецификации, дают рекомендации и/или ; производят закупки ; датчиков положения, выяснилось, что 55% занимаются этим для производственных потребностей, 23% делают это для нужд OEM (перепро дажи) и 22% — для обеих задач.

На месте: разнообразные датчики отвечают потребностям

% видов датчиков положения, находящихся в употреблении

Разнообразные технологии помогают измерить положение. Ответы респондентов опроса говорят о том, что в наступающем году машинное зрение и магнитострикционные датчики будут расти наиболее высокими темпами.

В ответах о сфеах применения датчиков положения 52% опрошенных отметили контроль перемещения, 43% указали непрерывное производство, 37% — серийное производство, 29% роботизированное оборудование и 27% — позиционирование инструмента. В число 10 ведущих приложений вошли упаковка, транспортировка материалов и деталей, дискретное производство, химическая обработка/технологический процесс, производство изделий из пластмасс и пакетирование (например, чая).

Читать еще:  Можно ли выгодно купить окна в рассрочку?

Виды технологии

Концевые выключатели в настоящее время используют 86% респондентов, а 81% использует индуктивные датчики. На основании результатов опроса можно сделать вывод, что концевые выключатели на протяжении еще одного года будут оставаться наиболее широко используемыми датчиками положения. Ожидается, что среди технологий, на которых основаны датчики положения, наибольшее распространение получит технология машинного зрения, которая набрала 49% и по сравнению с прошлым опросом увеличилась на 7%.

Среди фотоэлектрических датчиков и датчиков на основе машинного зрения есть новый класс датчиков присутствия, который, по словам Джона Китинга, менеджера по маркетингу продукции в компании Cognex, не был включен в опрос. Датчик Checker от Cognex обнаруживает детали по их внешнему виду без установки детали в определенном положении. В фотоэлектрических датчиках используется отраженный свет, что может привести к ошибочным результатам. Датчик Checker можно использовать для определения кодовых комбинаций и многочисленных характеристик. Поскольку он выдает только один результат: принять/отклонить, то для его работы не требуется логика ПЛК.

По словам другого менеджера по продукции из компании Cognex, Брайана Боутнера, проведенный опрос показывает большой интерес к видеодатчикам, и по мере того, как снижается их цена, а сами датчики становятся более простыми в использовании, будет возрастать их применение для решения задач определения положения. Этому же содействует большая способность находить детали вне зависимости от их ориентации, размера и внешнего вида.

Машинное зрение дает возможность более точно определять положение, что позволяет снизить расходы и увеличить производительность, полагает Роберт Ли, менеджер по стратегическому маркетингу в Omron Electronics. “Главным фактором, заставляющим производителей делать каждое изделие как можно лучше, является надежда потребителя на неизменное качество” — считает он.

Результаты опроса показывают, что по скорости роста следующими за видеодатчиками стоят магнитострикци-онные датчики (предполагаемый рост на следующий год составит 5 пунктов и достигнет 26%). Рост характерен также для таких сегментов, как лазерные, ультразвуковые датчики близости и датчики с удлинением провода (катушка).

“С появлением новых технологий рынок должен продемонстрировать тенденцию к бесконтактным видам датчиков, — разъясняет Л. Филипковски, менеджер по продукту в AutomationDirect. — Концевые выключатели всегда были надежным и испытанным средством для определения положения, однако у них есть физические ограничения, которые ставят предел их использованию при определенных условиях. Индуктивные и емкостные датчики близости, фотоэлектрические и ультразвуковые бесконтактные датчики в настоящее время используются в таких приложениях, которые даже трудно было бы представить ранее”

Филипковски также отмечает: “Новые технологии позволяют использовать бесконтактные индуктивные датчики близости на больших расстояниях, с блоками меньшего размера, для самонаведения с обучением. Происходит значительное снижение цен на ультразвуковые датчики, кроме того, меняется также их стиль”.

Среди самого главного, что определяет выбор при приобретении датчиков положения, респонденты отмечают надежность. Более трех четвертей опрошенных отметили эту характеристику как наиболее важную. Среди других характеристик по степени убывания значимости они отмечали защиту от короткого замыкания, помощь в установке и регулировке, коррозионную стойкость, светодиодный индикатор состояния. Завершает список десяти важнейших характеристик датчиков положения цифровой выход, защита от обратной полярности, светодиодный индикатор диагностики, наличие самообучения при установке и защита от брызг.

Большинство респондентов работают с датчиками положения в замкнутом контуре (82% — без вмешательства оператора). 59% респондентов используют стандартные датчики с интерфейсными модулями в сети устройств. 41% используют датчики, рассчитанные на работу в сетевой среде. 84% респондентов, которые в настоящее время используют сеть устройств, применяют Ethernet, 60% — DeviceNet. На основании результатов опроса можно сделать предположение, что Ethernet и в будущем году останется наиболее широко используемой сетью. В настоящее время 43% используют в подключении Profibus, 20% — AS-i и 20% — Interbus.

В среднем за последние 12 месяцев респонденты приобрели 128 датчиков положения. За последний год расходы каждого респондента на приобретение датчиков положения составили в среднем 29108 долл. США. В следующие 12 месяцев 31% респондентов приобретет большее число датчиков положения, у 65% приобретение останется на прежнем уровне, и только у 5% спрос на датчики снизится.

ИЗДЕЛИЯ, ОПРЕДЕЛЯЮЩИЕ ПРИСУТСТВИЕ

Чтобы получить информацию о производителях, посетите указанные web-сайты компаний.

Подобрать датчик положения и перемещения

Датчики положения и перемещения – незаменимые устройства для следящих систем с механическими элементами. Датчики перемещения и положения широко применяются для поддержания работоспособности машин и повышения их экономичности.

Области применения датчиков положения и перемещения

Сфера применения таких устройств очень обширна:

  • Строительство, машиностроение (машины сборки/тестирования, упаковка/сварка/заклепка)
  • Контрольно-измерительная аппаратура
  • Автомобильная техника и транспортная промышленность, подвижная техника (рулевое управление, клапана, педали, подкапотные системы, системы управления зеркалами, креслами, откидными крышами и т.п.)
  • Робототехника, сфера науки и образования
  • Медицинская техника
  • Сельское хозяйство и спецтехника
  • Дерево- и металлообработка (металлорежущее оборудование, проволочное производство, прокатные станы, станки с ПУ, машины для литья под давлением)
  • Системы слежения и позиционирования (различного рода приводы, антенны, панели и т.п.)
  • Охранные системы
  • Гидравлические/пневматические системы
  • Весовое оборудование

Назначение датчиков положения и перемещения

Датчики могут решать очень разные задачи:

  • Измерение положения и перемещения (углового, линейного) рабочих органов машин или механизмов, а также иных объектов + передача данных о состоянии далее в систему
  • Реализация в качестве звена обратной связи в разного рода АСУ, робототехнике, следящих системах:
    • Информирование о степени открытия/закрытия регулирующих элементов (клапана, заслонки, задвижки, муфты, насосные системы и т.п.)
    • Регулирование направляющих шкивов
    • Электропривод (шаговые двигатели, системы для ворот и т.д.)
  • Получение точных данных о расстоянии до объектов без жесткой привязки к ним (модели с возвратной пружиной и измерительными наконечниками)
  • Диагностика и проверка работоспособности механизмов в лабораториях, проведение испытаний
  • Мониторинг положения цилиндров в пневматических и гидравлических системах
  • Измерения в контрольно-измерительной технике (тригонометрические данные)

Виды приборов

Датчики положения и перемещения можно поделить на такие группы исходя из принципов работы:

  1. Датчики линейного перемещения. Измеряют перемещение объекта в определенных пределах по прямой (от пары см до нескольких метров). Бывают:
    • Потенциометрические. Имеют простую конструкцию, устойчивы к магнитным помехам
    • Бесконтактные. Отличаются высокой износостойкостью, скоростью, повторяемостью. Применяются в сложных эксплуатационных условиях
  2. Датчики углового перемещения (поворотные). Измеряют угловое положение объекта. Могут быть одно- (360°) и многооборотными. Разделяются на:
    • Потенциометрические. Отличаются простой конструкцией, устойчивостью к электрическим помехам, а также точностью измерений. Монтаж более удобный, возможна гибкая установка и скленивание
    • Бесконтактные. Применяются там, где в приоритете высокая надежность и долговечность, а также стандартизированные выходные сигналы
    • Без прикосновения. Выполнены в раздельном корпусе. Маркер и чувствительный элемент не имеют прямого контакта. Лучше подходят для применений в условиях вибрации и нестабильном позиционировании валов

Отдельно стоит отметить аксессуары, в частности линейные и ротационные маркеры положения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: